5,166 research outputs found

    Protective effect of nitric oxide against arsenic-induced oxidative damage in tall fescue leaves

    Get PDF
    Nitric oxide (NO) is a key molecule involved in many physiology processes. The effects of NO on alleviating arsenic-induced oxidative damage in tall fescue leaves were investigated. Arsenic (25 M) treatment induced significantly accumulation of reactive oxygen species (ROS) and led to serious lipid peroxidation in tall fescue leaves and the application of 100 M SNP before arsenic stress resulted in alleviated arsenic-induced electrolyte leakage and malondiadehyde (MDA) content in tall fescue leaves, the levels of hydrogen peroxide (H2O2) and superoxide radical (O2̅ ) were reduced as well. Moreover, the activities of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) increased in tall fescue leaves in presence of SNP under arsenic stress. This pattern was reversed by application of NO scavenger, 2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethy-limidazoline-1-oxyl-3-oxide (PTIO) before arsenic treatment. Pronounced increases in endogenous NO production was found in plants after exposure to arsenic stress. The results suggested that arsenic stress elevated endogenous NO level and that NO might act as a signaling molecule to enhance antioxidant enzyme activities, further protecting against injuries caused by arsenic toxicity

    Early re-brightenings in GRB afterglows as signatures of low-to-high density boundary

    Get PDF
    The association of long gamma-ray bursts (GRBs) with star forming regions and the idea of massive stars as progenitors of GRBs are widely accepted. Because of their short lifetimes, it is very likely that massive stars are still embedded in dense molecular clouds when they give birth to GRBs. Stellar winds from GRB progenitors can create low-density bubbles with sizes and densities strongly depending on the initial ambient density. A boundary between the bubble and the dense molecular cloud must exist with the density at the boundary increasing from that of the bubble to that of the outer cloud. We have calculated the lightcurves of the afterglows in such environments with three regions: the stellar wind region, the boundary, and the molecular cloud. We show that the interaction between the cylindrical jet and the density boundary can result in a re-brightening of the afterglow occurring as early as ∼1 day after the GRB. We compare our models with the optical afterglows of GRB 970508, GRB 000301C, and GRB 030226. We find that the values of our model parameters, including the radius of the wind bubble, the densities in the bubble and in the outer molecular cloud are within typical ranges. © 2005 Elsevier B.V. All rights reserved.postprin

    Variation of microphysics in wind bubbles: an alternative mechanism for explaining the rebrightenings in Gamma-ray burst afterglows

    Get PDF
    Conventionally, long Gamma-ray bursts (GRBs) are thought to be caused by the core collapses of massive stars. During the lifetime of a massive star, a stellar wind bubble environment should be produced. Furthermore, the microphysics shock parameters may vary along with the evolution of the fireball. Here, we investigate the variation of the microphysics shock parameters under the condition of wind bubble environment, and allow the microphysics shock parameters to be discontinuous at shocks in the ambient medium. It is found that our model can acceptably reproduce the rebrightenings observed in GRB afterglows, at least in some cases. The effects of various model parameters on rebrightenings are investigated. The rebrightenings observed in both the R-band and X-ray afterglow light curves of GRB 060206, GRB 070311 and GRB 071010A are reproduced in this model. © 2009 The Authors. Journal compilation © 2009 RAS.postprin

    RFID-enabled complex event processing application framework for manufacturing

    Get PDF
    In order to face up with classic manufacturing challenges such as high work in progress (WIP) inventories, complexity in production planning and scheduling, and low labour and machine utilisation, many manufacturing companies made their efforts in implementing RFID (Radio Frequency Identification Devices) throughout the manufacturing workshops. Through this way, all production data in manufacturing fields can be obtained in real time, and it improves the flexibility and responsivity to the changing market for the companies. However, at the same time the RFID deployment also introduces a new challenge which requires an effective and efficient method to handle the large amounts of events. This paper proposes an application framework for a real-time Complex Event Management System (CEMS) based on RFID equipments deployment. With the use of Complex Event Processing (CEP) technologies, this system allows users to obtain interested and meaningful information from large numbers of primitive events captured from the RFID devices deployed in manufacturing shop-floor in real time. This paper presents the RFID deployment infrastructure first, and then system design of the CEMS is proposed. © 2011 Inderscience Enterprises Ltd.postprin

    What do γ\gamma-ray bursts look like?

    Full text link
    There have been great and rapid progresses in the field of γ\gamma-ray bursts (denoted as GRBs) since BeppoSAX and other telescopes discovered their afterglows in 1997. Here, we will first give a brief review on the observational facts of GRBs and direct understanding from these facts, which lead to the standard fireball model. The dynamical evolution of the fireball is discussed, especially a generic model is proposed to describe the whole dynamical evolution of GRB remnant from highly radiative to adiabatic, and from ultra-relativistic to non-relativistic phase. Then, Various deviations from the standard model are discussed to give new information about GRBs and their environment. In order to relax the energy crisis, the beaming effects and their possible observational evidences are also discussed in GRB's radiations.Comment: 10 pages, Latex. Invited talk at the Pacific Rim Conference on Stellar Astrophysics, Hong Kong, China, Aug. 199

    Fabrication and characteristics of a GaInP/GaAs heterojunction bipolar transistor using a selective buried sub-collector

    Get PDF
    A C-doped GaInP/GaAs heterojunction bipolar transistor (HBT) with a selective buried sub-collector has been fabricated by two growth steps. The active HBT region was made on the selective buried sub-collector layer with minimum overlap of the extrinsic base and the sub-collector region resulting in substantial reduction of the base-collector capacitance. The experiment shows that the base-collector capacitance is reduced to about half of that of a conventional HBT while the base resistance remains unchanged resulting in a 40-50% increase in the maximum oscillation frequency. Both DC and RF characteristics are investigated and compared with a conventional HBT. A current gain of 40 cutoff frequency of 50 GHz and maximum oscillation frequency of 140 GHz were obtained for the GaInP/GaAs HBT. It is demonstrated that the selective buried sub-collector provides an effective means for enhancing RF performance of an HBT. © 1997 IEEE.published_or_final_versio

    Electric-field distribution in Au–semi-insulating GaAs contact investigated by positron-lifetime technique

    Get PDF
    Positron-lifetime spectroscopy has been used to investigate the electric-field distribution occurring at the Au–semi-insulating GaAs interface. Positrons implanted from a 22Na source and drifted back to the interface are detected through their characteristic lifetime at interface traps. The relative intensity of this fraction of interface-trapped positrons reveals that the field strength in the depletion region saturates at applied biases above 50 V, an observation that cannot be reconciled with a simple depletion approximation model. The data, are, however, shown to be fully consistent with recent direct electric-field measurements and the theoretical model proposed by McGregor et al. [J. Appl. Phys. 75, 7910 (1994)] of an enhanced EL2+ electron-capture cross section above a critical electric field that causes a dramatic reduction of the depletion region’s net charge density. Two theoretically derived electric field profiles, together with an experimentally based profile, are used to estimate a positron mobility of ∼95±35 cm2 V-1 s-1 under the saturation field. This value is higher than previous experiments would suggest, and reasons for this effect are discussed.published_or_final_versio

    A case of implementing RFID-based real-time shop-floor material management for household electrical appliance manufacturers

    Get PDF
    Radio Frequency Identification (RFID) technologies provide automatic and accurate object data capturing capability and enable real-time object visibility and traceability. Potential benefits have been widely reported for improving manufacturing shop-floor management. However, reports on how such potentials come true in real-life shop-floor daily operations are very limited. As a result, skeptics overwhelm enthusiasm. This paper contributes to the re-vitalization of RFID efforts in manufacturing industries by presenting a real-life case study of applying RFID for managing material distribution in a complex assembly shop-floor at a large air conditioner manufacturer. The case study discusses how technical, social and organizational issues have been addressed throughout the project within the company. It is hoped that insights and lessons gained be generalized for future efforts across household electrical appliance manufacturers that share similar shop-floor. © 2010 The Author(s).published_or_final_versionSpringer Open Choice, 21 Feb 201

    Sample entropy analysis of EEG signals via artificial neural networks to model patients' consciousness level based on anesthesiologists experience.

    Get PDF
    Electroencephalogram (EEG) signals, as it can express the human brain's activities and reflect awareness, have been widely used in many research and medical equipment to build a noninvasive monitoring index to the depth of anesthesia (DOA). Bispectral (BIS) index monitor is one of the famous and important indicators for anesthesiologists primarily using EEG signals when assessing the DOA. In this study, an attempt is made to build a new indicator using EEG signals to provide a more valuable reference to the DOA for clinical researchers. The EEG signals are collected from patients under anesthetic surgery which are filtered using multivariate empirical mode decomposition (MEMD) method and analyzed using sample entropy (SampEn) analysis. The calculated signals from SampEn are utilized to train an artificial neural network (ANN) model through using expert assessment of consciousness level (EACL) which is assessed by experienced anesthesiologists as the target to train, validate, and test the ANN. The results that are achieved using the proposed system are compared to BIS index. The proposed system results show that it is not only having similar characteristic to BIS index but also more close to experienced anesthesiologists which illustrates the consciousness level and reflects the DOA successfully.This research is supported by the Center forDynamical Biomarkers and Translational Medicine, National Central University, Taiwan, which is sponsored by Ministry of Science and Technology (Grant no. MOST103-2911-I-008-001). Also, it is supported by National Chung-Shan Institute of Science & Technology in Taiwan (Grant nos. CSIST-095-V301 and CSIST-095-V302)

    Clinical significance of CHD1L in hepatocellular carcinoma and therapeutic potentials of virus-mediated CHD1L depletion

    Get PDF
    Background: Hepatocellular carcinoma (HCC) is among the most lethal of human malignancies. It is difficult to detect early, has a high recurrence rate and is refractory to chemotherapies. Amplification of 1q21 is one of the most frequent genetic alterations in HCC. CHD1L is a newly identified oncogene responsible for 1q21 amplification. This study aims to investigate the role of CHD1L in predicting prognosis and chemotherapy response of patients with HCC, its chemoresistant mechanism and whether virus-mediated CHD1L silencing has therapeutic potentials for HCC treatment. Methods: The clinical significance of CHD1L in a cohort of 109 HCC cases including 50 cases who received transarterial chemoembolisation treatment was assessed by clinical correlation and Kaplan-Meier analyses. A CHD1L-overexpressing cell model was generated and the mechanism of chemoresistance involving CHD1L was investigated. An adenovirus-mediated silencing method was used to knockdown CHD1L, and its effects on tumorigenicity and chemoresistance were investigated in vivo and in vitro. Results: Overexpression of CHD1L was significantly associated with tumour microsatellite formation (p=0.045), advanced tumour stage (p=0.018), overall survival time (p=0.002), overall survival time of patients who received transarterial chemoembolisation treatment (p=0.028) and chemoresistance (p=0.020) in HCC. Interestingly, CHD1L could inhibit apoptosis induced by 5-fluorourail (5-FU) but not doxorubicin. The mechanistic study revealed that the involvement of the Nur77-mediated pathway in chemotherapeutic agent-induced apoptosis can dictate if CHD1L could confer resistance to chemotherapy. Furthermore, an adenoviral vector containing short hairpin RNAs against CHD1L (CHD1L-shRNAs) could suppress cell growth, clonogenicity and chemoresistance to 5-FU. An in vivo study found that CHD1L-shRNAs could inhibit xenograft tumour growth and increase the sensitivity of tumour cells to 5-FU in nude mice. Conclusions: This study highlighted for the first time the prognostic value of CHD1L in HCC and the potential application of virus-mediated CHD1L silencing in HCC treatment.published_or_final_versio
    • …
    corecore